471 research outputs found

    A stochastic model of turbulent mixing with chemical reaction: Nitric oxide formulation in a plug-flow burner

    Get PDF
    A stochastic model of turbulent mixing was developed for a reactor in which mixing is represented by n-body fluid particle interactions. The model was used to justify the assumption (made in previous investigations of the role of turbulent mixing on burner generated thermal nitric oxide and carbon monoxide emissions) that for a simple plug flow reactor, composition nonuniformities can be described by a Gaussian distribution function in the local fuel:air equivalence ratio. Recent extensions of this stochastic model to include the combined effects of turbulent mixing and secondary air entrainment on thermal generation of nitric oxide in gas turbine combustors are discussed. Finally, rate limited upper and lower bounds of the nitric oxide produced by thermal fixation of molecular nitrogen and oxidation of organically bound fuel nitrogen are estimated on the basis of the stochastic model for a plug flow burner; these are compared with experimental measurements obtained using a laboratory burner operated over a wide range of test conditions; good agreement is obtained

    Silicon production in an aerosol reactor

    Get PDF
    An aerosol reactor system was developed in which large particles of silicon can be grown by silane pyrolysis. To grow particles to sizes larger than one micron, vapor deposition must be used to grow a relatively small number of seed particles. Suppression of nucleation is achieved by limiting the rate of gas phase chemical reactions such that the condensible products of the gas phase chemical reactions diffuse to the surface of the seed particles as rapidly as they are produced. This prevents high degrees of supersaturation and runaway nucleation during the growth process. Particles on the order of 10 microns were grown repeatedly with the present aersol reactor. The nucleation controlled aerosol reactor is, therefore, a suitable system for the production of powders that can readily be separated from the gas by aerodynamic means

    Elemental analysis of chamber organic aerosol using an Aerodyne high-resolution aerosol mass spectrometer

    Get PDF
    The elemental composition of laboratory chamber secondary organic aerosol (SOA) from glyoxal uptake, α-pinene ozonolysis, isoprene photooxidation, single-ring aromatic photooxidation, and naphthalene photooxidation is evaluated using Aerodyne high-resolution time-of-flight mass spectrometer data. SOA O/C ratios range from 1.13 for glyoxal uptake experiments to 0.30–0.43 for α-pinene ozonolysis. The elemental composition of α-pinene and naphthalene SOA is also confirmed by offline mass spectrometry. The fraction of organic signal at m/z 44 is generally a good measure of SOA oxygenation for α-pinene/O3, isoprene/high-NO_x, and naphthalene SOA systems. The agreement between measured and estimated O/C ratios tends to get closer as the fraction of organic signal at m/z 44 increases. This is in contrast to the glyoxal uptake system, in which m/z 44 substantially underpredicts O/C. Although chamber SOA has generally been considered less oxygenated than ambient SOA, single-ring aromatic- and naphthalene-derived SOA can reach O/C ratios upward of 0.7, well within the range of ambient PMF component OOA, though still not as high as some ambient measurements. The spectra of aromatic and isoprene-high-NO_x SOA resemble that of OOA, but the spectrum of glyoxal uptake does not resemble that of any ambient organic aerosol PMF component

    Ash Vaporization and Condensation During Combustion of a Suspended Coal Particle

    Get PDF
    The results of a theoretical study of the formation and growth of the submicron flyash aerosol around a single burning coal particle are presented. The vaporization of ash and subsequent aerosol formation near the coal particle are studied because the local combustion environment influences these processes strongly. A mathematical model is developed that describes the transport of ash vapor and and the growth of the aerosol. The ash aerosol calculation is superimposed on an existing solution to the combustion problem. Included in the model are the effects of convective transport and of both homogeneous and heterogeneous condensation of the ash vapor. The results of the calculations show that refractory compounds with low surface tension, like silica, nucleate very near the coal particle's surface and produce a substantial mass loading of aerosol. The presence of the aerosol does not greatly affect the ash vaporization rate, which is primarily a function of combustion conditions. The size and amount of the submicron ash aerosol are determined by both the local combustion conditions and the ash's physical properties

    Thermodynamics of the formation of sulfuric acid dimers in the binary (H_2SO_4–H_2O) and ternary (H_2SO_4–H_2O–NH_3) system

    Get PDF
    Sulfuric acid is an important gas influencing atmospheric new particle formation (NPF). Both the binary (H_2SO_4–H_2O) system and the ternary system involving ammonia (H_2SO_4–H_2O–NH_3) may be important in the free troposphere. An essential step in the nucleation of aerosol particles from gas-phase precursors is the formation of a dimer, so an understanding of the thermodynamics of dimer formation over a wide range of atmospheric conditions is essential to describe NPF. We have used the CLOUD chamber to conduct nucleation experiments for these systems at temperatures from 208 to 248 K. Neutral monomer and dimer concentrations of sulfuric acid were measured using a chemical ionization mass spectrometer (CIMS). From these measurements, dimer evaporation rates in the binary system were derived for temperatures of 208 and 223 K. We compare these results to literature data from a previous study that was conducted at higher temperatures but is in good agreement with the present study. For the ternary system the formation of H_2SO_4·NH_3 is very likely an essential step in the formation of sulfuric acid dimers, which were measured at 210, 223, and 248 K. We estimate the thermodynamic properties (dH and dS) of the H_2SO_4·NH_3 cluster using a simple heuristic model and the measured data. Furthermore, we report the first measurements of large neutral sulfuric acid clusters containing as many as 10 sulfuric acid molecules for the binary system using chemical ionization–atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometry

    Thermally induced structural changes in coal combustion. Final report

    Get PDF
    The effects of the temperature-time history during coal devolitization and oxidation on the physical properties and the reactivity of resulting char were studied experimentally for temperatures and residence times typical of pulverized combustion. Experiments were also carried out at somewhat lower temperatures and correspondingly longer residence times. An electrically heated laminar flow reactor was used to generate char and measure the rates of oxidation at gas temperatures about 1600K. Partially oxidized chars were extracted and characterized by gas adsorption and mercury porosimetry, optical and scanning electron microscopy, and oxidation in a thermogravimetric analysis system (TGA). A different series of experiments was conducted using a quadrople electrodynamic balance. Single particles were suspended electrodynamically and heated by an infrared laser in an inert or oxygen-containing atmosphere. During the laser heating, measurements were taken of particle mass, size/shape, and temperature

    Effect of ions on sulfuric acid-water binary particle formation: 2. Experimental data and comparison

    Get PDF
    We report comprehensive, demonstrably contaminant-free measurements of binary particle formation rates by sulfuric acid and water for neutral and ion-induced pathways conducted in the European Organization for Nuclear Research Cosmics Leaving Outdoor Droplets chamber. The recently developed Atmospheric Pressure interface-time of flight-mass spectrometer was used to detect contaminants in charged clusters and to identify runs free of any contaminants. Four parameters were varied to cover ambient conditions: sulfuric acid concentration (10^5 to 10^9  mol cm^(−3)), relative humidity (11% to 58%), temperature (207 K to 299 K), and total ion concentration (0 to 6800 ions cm^(−3)). Formation rates were directly measured with novel instruments at sizes close to the critical cluster size (mobility size of 1.3 nm to 3.2 nm). We compare our results with predictions from Classical Nucleation Theory normalized by Quantum Chemical calculation (QC-normalized CNT), which is described in a companion paper. The formation rates predicted by the QC-normalized CNT were extended from critical cluster sizes to measured sizes using the UHMA2 sectional particle microphysics model. Our results show, for the first time, good agreement between predicted and measured particle formation rates for the binary (neutral and ion-induced) sulfuric acid-water system. Formation rates increase with RH, sulfuric acid, and ion concentrations and decrease with temperature at fixed RH and sulfuric acid concentration. Under atmospheric conditions, neutral particle formation dominates at low temperatures, while ion-induced particle formation dominates at higher temperatures. The good agreement between the theory and our comprehensive data set gives confidence in using the QC-normalized CNT as a powerful tool to study neutral and ion-induced binary particle formation in atmospheric modeling

    Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    Get PDF
    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H_2SO_4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H_2SO_4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H_2SO_4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H_2SO_4 cluster distribution compared to binary (H_2SO_4-H_2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H_2SO_4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit

    Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments

    Get PDF
    Sulfuric acid, amines and oxidized organics have been found to be important compounds in the nucleation and initial growth of atmospheric particles. Because of the challenges involved in determining the chemical composition of objects with very small mass, however, the properties of the freshly nucleated particles and the detailed pathways of their formation processes are still not clear. In this study, we focus on a challenging size range, i.e., particles that have grown to diameters of 10 and 15 nm following nucleation, and measure their water uptake. Water uptake is useful information for indirectly obtaining chemical composition of aerosol particles. We use a nanometer-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) at subsaturated conditions (ca. 90% relative humidity at 293 K) to measure the hygroscopicity of particles during the seventh Cosmics Leaving OUtdoor Droplets (CLOUD7) campaign performed at CERN in 2012. In CLOUD7, the hygroscopicity of nucleated nanoparticles was measured in the presence of sulfuric acid, sulfuric acid-dimethylamine, and sulfuric acid-organics derived from α-pinene oxidation. The hygroscopicity parameter κ decreased with increasing particle size, indicating decreasing acidity of particles. No clear effect of the sulfuric acid concentration on the hygroscopicity of 10 nm particles produced from sulfuric acid and dimethylamine was observed, whereas the hygroscopicity of 15 nm particles sharply decreased with decreasing sulfuric acid concentrations. In particular, when the concentration of sulfuric acid was 5:1 x 10^6 molecules cm^(-3) in the gas phase, and the dimethylamine mixing ratio was 11.8 ppt, the measured κ of 15 nm particles was 0.31 ± 0.01: close to the value reported for dimethylaminium sulfate (DMAS) (κ_(DMAS) ~0:28). Furthermore, the difference in κ between sulfuric acid and sulfuric acid-dimethylamine experiments increased with increasing particle size. The κ values of particles in the presence of sulfuric acid and organics were much smaller than those of particles in the presence of sulfuric acid and dimethylamine. This suggests that the organics produced from α-pinene ozonolysis play a significant role in particle growth even at 10 nm sizes

    Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets

    Get PDF
    The growth of aerosol due to the aqueous phase oxidation of sulfur dioxide by ozone was measured in laboratory-generated clouds created in the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). Experiments were performed at 10 and −10 °C, on acidic (sulfuric acid) and on partially to fully neutralised (ammonium sulfate) seed aerosol. Clouds were generated by performing an adiabatic expansion – pressurising the chamber to 220 hPa above atmospheric pressure, and then rapidly releasing the excess pressure, resulting in a cooling, condensation of water on the aerosol and a cloud lifetime of approximately 6 min. A model was developed to compare the observed aerosol growth with that predicted using oxidation rate constants previously measured in bulk solutions. The model captured the measured aerosol growth very well for experiments performed at 10 and −10 °C, indicating that, in contrast to some previous studies, the oxidation rates of SO2 in a dispersed aqueous system can be well represented by using accepted rate constants, based on bulk measurements. To the best of our knowledge, these are the first laboratory-based measurements of aqueous phase oxidation in a dispersed, super-cooled population of droplets. The measurements are therefore important in confirming that the extrapolation of currently accepted reaction rate constants to temperatures below 0 °C is correct
    corecore